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dData Observatory Foundation.

Abstract

Although the amount of RDF data has been steadily increasing over the years,

the majority of information on the Web is still residing in other formats, and

is often not accessible to Semantic Web services. A lot of this data is available

through APIs serving JSON documents. In this work we propose a way of ex-

tending SPARQL with the option to consume JSON APIs and integrate this

information into SPARQL query answers, obtaining a language that combines

data from the “traditional” Web to the Semantic Web. Our proposal is based

on an extension of the SERVICE operator with the ability to connect to JSON

APIs. With the aim of evaluating these queries as efficiently as possible, we

show that the main bottleneck is the amount of API requests, and present an

algorithm that produces “worst-case optimal” query plans that reduce the num-

ber of requests as much as possible. We note that the analysis of this algorithm

is studied in terms of an algorithm for evaluating relational queries with access

methods with the minimal number of access queries, which is of independent in-

terest. We show the superiority of the worst-case optimal approach in a series of

experiments that take existing SPARQL benchmarks, and augment them with

the ability to connect to JSON APIs in order to obtain additional information.
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1. Introduction

The Semantic Web provides a platform for publishing data on the Web via

the Resource Description Framework (RDF). Having a common format for data

dissemination allows for applications of increasing complexity since it enables

them to access data obtained from different sources, or describing different enti-5

ties. The most common way of accessing this information is through SPARQL

endpoints; SPARQL is the standard language for accessing data on the Semantic

Web [21], and a SPARQL endpoint is a simple interface where users can obtain

the RDF data available on the server by executing a SPARQL query.

In the Web context it is rarely the case that one can obtain all the needed10

information from a single data source, and therefore it is necessary to draw the

data from multiple servers or endpoints. In order to address this, a specific

operator that allows parts of the query to access different SPARQL endpoints,

called SERVICE, was included into the latest version of the language [38].

However, the majority of the data available on the Web today is still not15

published as RDF, which makes it difficult to connect it to Semantic Web ser-

vices. A huge amount of this data is made available through Web APIs which

use a variety of different formats to provide data to the users. It is therefore

important to make all of this data available to Semantic Web technologies, in

order to create a truly connected Web. One way of achieving this is to extend20

the SERVICE operator of SPARQL with the ability to connect to Web APIs in

the same way as it connects to other SPARQL endpoints. In this paper we make

a first step in this direction by extending SERVICE with the option to connect

to JSON APIs and incorporate their data into SPARQL query answers. We

picked JSON because it is currently one of the most popular data formats used25

in Web APIs, but the results presented in the paper can easily be extended to

any API format.

By allowing SPARQL to connect to an API we can extend the query answer

with data obtained from a Web service, in real time and without any setup. Use
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cases for such an extension are numerous and can be particularly practical when30

the data obtained from the API changes very often (such as weather conditions,

state of the traffic, etc.). To illustrate this let us consider the following example.

Example 1. We find ourselves in Scotland in order to do some hiking. We

obtain a list of all Scottish mountains using the WikiData SPARQL endpoint,

but we would prefer to hike in a place that is sunny. This information is not in35

WikiData, but is available through a weather service API called weather.api.

This API implements HTTP requests, so for example to retrieve the weather on

Ben Nevis, the highest mountain in the UK, we can issue a GET request with

the IRI:

http://weather.api/request?q=Ben_Nevis40

The API responds with a JSON document containing weather information,

say of the form

{"timestamp": "24/10/2017 11:59:07",

"temperature": 3, "description": "clear sky",45

"coord": {"lat": 56.79, "long": -5.02}}

Therefore, to obtain all Scottish mountains with a favourable weather all we

need to do is call the API for each mountain on our list, keeping only those

records where the weather condition is "clear sky". One can do this manu-50

ally, but this quickly becomes cumbersome, particularly when the number of

API calls is large. Instead, we propose to extend the functionality of SPARQL

SERVICE, allowing it to communicate with JSON APIs such as the weather

service above. For our example we can use the following (extended) query:

SELECT ?x ?l WHERE {55

?x wdt:instanceOf wd:mountain .

?x wdt:locatedIn wd:Scotland .

?x rdfs:label ?l .
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SERVICE <http://weather.api/request?q={?l}>{(["description"]) AS (?d)}

FILTER (?d = "clear sky")60

}

The first part of our query is meant to retrieve the IRI and label of the moun-

tain in WikiData. The extended SERVICE operator then takes the (instantiated)

URI template where the variable ?l is replaced with the label of the mountain,65

and upon executing the API call processes the received JSON document using

an expression ["description"], which extracts from this document the value

under the key description, and binds it to the variable ?d. Finally, we filter

out those locations with undesirable weather conditions. �

With the ability of querying endpoints and APIs in real time we face an70

even more challenging task: How do we evaluate such queries? Connecting

to APIs poses an interesting new problem from a database perspective, as the

bottleneck shifts from disk access to the amount of API calls. For example,

when evaluating the query in Example 1, about 80% of the time is spent in

API calls. This is mostly because HTTP requests are slower that disk access,75

something we cannot control. To gauge the time taken for APIs to respond to

a GET request we did a quick study of five popular Web APIs. Based on the

API documentation we created ten different calls for each API, and ran each

call five times, recording the average value. The results presented in Table 1

show us the minimum, the maximum, and the average time over our calls for80

each API. The least amount of time needed was 0.3 seconds, which is already

quite substantial when processing a query that makes a huge amount of API

calls, and it can range up to more than a second.

Hence, to evaluate these queries efficiently we need to understand how to

produce a query plan for them that minimizes the number of calls to the API.85

Apart from formally defining the syntax and the semantics of the extended

SERVICE operator, finding algorithms that minimize the number of API calls is

the main question studied in this paper.
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Yelp! Twitter Open Weather Wikipedia StackOverflow All

min 0.4 0.4 0.4 0.8 0.3 0.3

max 1.3 0.8 1.4 1.3 1.5 1.5

avg 1.1 0.5 0.6 1.0 0.6 0.76

Table 1: Min, max, and average response time (in seconds) of popular Web APIs based on

ten typical calls they support.

Contributions. Our main contributions can be summarized as follows:

- Formalization. We formalize the syntax and the semantics of the SERVICE90

extension which supports communication with JSON APIs. This is done in a

modular way, similar to the SPARQL formalization of [36], making it easy to

incorporate this extension into the language standard.

- Evaluation algorithms. We propose several evaluation strategies for the ex-

tended SERVICE operator, starting with a basic algorithm that mimics the eval-95

uation of basic graph patterns. To minimize the number of API calls, we imple-

ment a series of optimizations based on algorithms that evaluate queries under

running time comparable to the the AGM bound [6, 35] for estimating the

number of intermediate results in relational joins.

- Optimality guarantees. We formally prove that the algorithm based on the100

AGM bound is indeed worst case optimal for evaluating a large fragment of

SPARQL patterns that use remote SERVICE calls. More precisely, we show that

we do not make more calls than we would need to make in the worst case over

all possible RDF graphs, and API datasets of a given size. Our optimality proof

also establishes tight bounds for answering join queries over relations with access105

methods [13, 9], which is of independent interest.

- Implementation. We provide a fully functional implementation of the extended

SERVICE operator within the Apache Jena framework, with the support of sev-

eral different evaluation algorithms. The source code of our implementation can

be found at [1].110

- Experimental evaluation. We test different evaluation strategies for the ex-
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tended SERVICE operator over a range of queries and data sources. In particular,

we extend the Berlin query benchmark [10], and the recent WikiData bench-

mark [23] with the ability to pull data from APIs. Our results provide empirical

evidence for the superiority of the worst case optimal algorithm to diminish the115

number of API calls. Additionally, we show how different algorithms scale as

the size of the base dataset and the API load increase.

Remark. Several aspects of this work have been presented at different con-

ferences in the past. In particular, a simple demo showcasing the utility of the

extended SERVICE operator has been presented in [25]. An initial study of worst120

case optimal algorithms in this context was conducted in [32], and a short paper

on the topic was presented in [33]. In this paper we extend these works along

the following lines:

• We provide a more general extension for API SERVICE calls, that can

process request that return JSON arrays instead of JSON values. The125

semantics has therefore been rewritten to account for this case, and we

also include a set of examples to guide the intuition in this case. Moreover,

all results that where previously presented are now extended to account

for this case.

• We provide a full proof of the worst case optimal bound for the number130

of API calls, which was only announced in [32]. Given the setting we con-

sider, our proof also shows how to adapt the worst case optimal approach

to evaluate joins under access restrictions, which is a problem that, to the

best of our knowledge, has not been tackled previously. Additionally, the

paper includes all of the remaining proofs for the results announced in135

[32].

• We update the experimental section with different sizes of datasets using

the Berlin benchmark [10], so that we understand how the API calls scale

with bigger databases. We also we extend this to the recent Wikidata

query benchmark [23].140
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• Finally, we provide a detailed comparison of our approach with the previ-

ous work in Section 2.

Organization. We place our work in the context of the existing literature in

Section 2. We recall standard notions in Section 3. The formal definition and

examples of the extended SERVICE are given in Section 4, where we also give a145

basic strategy for evaluating this operator. The worst-case optimal algorithm

for evaluating queries that use SERVICE is presented in Section 6. Experimental

evaluation is given in Section 7. We conclude in Section 8.

2. Related work

Pulling data from different sources is a fundamental feature of Semantic Web150

technologies, and there is an abundance of the literature on the subject. Most

notably, SPARQL 1.1. [21] introduces the ability to federate queries using the

SERVICE keyword, which permits connecting to different endpoints in order to

bring in data from a diverse set of sources distributed over the Web. Fundamen-

tal studies in the area [3, 4, 5, 31, 30] lay down the formal foundations for the155

SERVICE operator, and also identify main challenges for query evaluation in the

distributed setting. The main conclusions regarding efficiency in this context

resonate with our argument that the amount of calls to external endpoints is

the main bottleneck for evaluation.

When it comes to optimizing the evaluation of federated queries, there are160

several approaches that aim to minimize the amount of SERVICE calls and data

transfers between different endpoints. The main objective here is to generate

an optimal query plan without having all the data available locally. Most ap-

proaches to this problem combine Selinger-style query optimization and a clever

use of heuristics and/or data statistics for each endpoint to produce efficient ex-165

ecution plans [14, 29, 40]. This is contrast to our approach, since we are agnostic

to any statistics on the queried APIs, and simply aim at minimizing the number

of API calls in a worst-case optimal manner. The work in [43] starts from the

same assumption regarding the lack of information about the data in the end-
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points, but query planning is done based on heuristics only, without providing170

any formal guarantees of their efficiency. Overall, what differentiates us most

from this work is that in contrast to the classical relational join optimization

based on statistics and heuristics, we build our execution plans to be optimal

in the worst case.

Additionally, one can view the evaluation of federated queries in a wider175

setting. For instance, [22], already proposes a way to execute SPARQL queries

on the linked Web, before federation became part of the language standard, and

identifies network latency as a potential stumbling stone to query execution.

Similarly, [8], casts these ideas in a more general way, while [42] changes the

execution paradigm by shifting the processing load from the server executing180

the query to the client side.

Complementary to federation in SPARQL, there is also a lot of work on

bringing data from different sources into SPARQL, in a similar way as we do

in this paper. Some of these approaches are based on the idea of building RDF

wrappers for other formats [26, 34, 39, 15], which is somewhat orthogonal to185

our approach, and can be prohibitively expensive when the API data changes

often (like in Example 1). The most similar to our work are the approaches

of [16, 17, 7, 41] that incorporate API data directly into SPARQL, but do not

provide query execution guarantees.

Going in the other direction, there is also a lot of work on bringing SPARQL190

query results into Web APIs. For instance, [27] defines a transformation lan-

guage for turning SPARQL results into JSON, while [28] allows building generic

APIs based on RDF and Linked Data.

Finally, it is worth noting that worst case optimal evaluation of SPARQL

queries was considered before in [23]. The main difference with this work is the195

setting: while [23] assumes all the data to be available locally, we rely on APIs

to provide part of the data. Thus, the bottleneck changes, and whereas [23] is

concerned with minimizing the total running time of queries, we only focus on

API calls (a measure that does not exist in the setting of [23] because everything

is assumed to be local).This also requires us to consider evaluating joins under200
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access restrictions (e.g. in Example 1, the value of the variable ?l has to be

available before making the API call), which is a problem that, to the best of our

knowledge, has not been solved in a worst-case optimal manner previously. Of

course, it would be interesting to study how to merge our approach, providing

an algorithm that is both worst-case optimal in terms of database operations205

and in terms of API calls. We leave this promising direction as future work.

3. Preliminaries

RDF Graphs. Let I, L, and B be infinite disjoint sets of IRIs, literals, and

blank nodes, respectively. The set of RDF terms T is I∪L∪B. An RDF triple

is a triple (s, p, o) from T × I ×T, where s is called subject, p predicate, and o210

object. An (RDF) graph is a finite set of RDF triples. For simplicity we assume

that RDF databases consist of a single RDF graph, although our proposal can

easily be extended to deal with datasets with multiple graphs.

SPARQL. SPARQL is the standard query language for RDF [21]. Let V be

a set of variables, where V is disjoint from T. A tuple t ∈ (I ∪ L ∪V) × (I ∪215

V)× (I∪L∪V) is called a triple pattern. Blank nodes in triple patterns can be

considered as query variables for our purposes. A sequence {t1}.{t2}. · · · .{tn},

where each ti is a triple pattern, is called a basic graph pattern. We denote by

var(t) and var(P ) the set of variables found in a triple pattern t and basic graph

pattern P , respectively.220

The semantics of graph patterns is defined in terms of mappings [21]; that is,

partial functions from the set of variables V to IRIs I. The domain dom(µ) of a

mapping µ is the set of variables on which µ is defined. Two mappings µ1 and

µ2 are compatible (written as µ1 ∼ µ2) if µ1(?x) = µ2(?x) for all variables ?x in

dom(µ1)∩dom(µ2). If µ1 ∼ µ2, then we write µ1∪µ2 for the mapping obtained225

by extending µ1 according to µ2 on all the variables in dom(µ2) \ dom(µ1).

Note that if two mappings µ1 and µ2 have no variables in common they are

always compatible, and that the empty mapping µ∅ is compatible with any
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other mapping. For sets M1 and M2 of mappings we also define their join as

M1 ./ M2 = {µ1 ∪ µ2 : µ1 ∈M1, µ2 ∈M2 and µ1 ∼ µ2}.230

We can now define the evaluation of a triple pattern and a basic graph

pattern over an RDF graph G:

JtKG = {µ | var(t) = dom(µ) and µ(t) ∈ G}

J{t1}. · · · .{tn}}KG = Jt1KG ./ ... ./ JtnKG

SPARQL queries can be constructed by combining a wide range of query

operators, such as union, optional, filters, aggregates, property paths, etc. We

assume the reader is familiar with the syntax and semantics of SPARQL 1.1. If

P is a SPARQL pattern, we also denote the evaluation of a graph pattern P

over G as JP KG. We do recall the syntax and semantics of the SERVICE operator,235

because it will be heavily used in this paper.

If a ∈ I, then by ep(a) we denote the graph G that is served by the SPARQL

endpoint reached by a. In case that a is not a valid endpoint (i.e. an RDF

dataset), we define ep(a) = ∅. Similarly, if ?x is a variable, and µ(?x) is not

defined, then we consider that ep(µ(?x)) = ∅. The set JP KG for a pattern

P = P1 . SERVICE a {P2} is defined as

JP KG = { µ | µ = µ1 ∪ µ2,

where µ1 ∈ JP1KG, µ2 ∈ JP2Kep(µ(a)), and µ1 ∼ µ2}

As pointed out by Aranda et al. [4, 3], the semantics of service patterns

P = P1 . SERVICE a {P2} is not clearly defined when a is a variable and not all

mappings in JP1KG bind variable a: in this case we do not know which graphs

need to be queried because they depend on the result of the pattern itself. The240

way we deal with the situation is by using P1 as a “guard” in case that a is

a variable, only calling P2 in mappings in JP1KG where µ(a) is bound. Having

service patterns with such a guard is equivalent to the strongly bound safety

condition of Aranda et al., since one can simply push all “non-SERVICE” patterns

into P1.245

Finally, if Q is a query of the form Q = SELECT W WHERE { P }, with P a
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graph pattern, and W a set of variables, then the result of evaluating Q over

the graph G, denoted JQKG, is defined as {µW | µ ∈ JP KG}, where µW denotes

the mapping obtained by restricting the domain of µ to the variables from W .

JSON. The JSON format [12] defines the following types of values. First,250

true, false and null are JSON values. Any decimal number (e.g. 3.14, 23)

is also a JSON value, called a number. Furthermore, if s is a string of unicode

characters then "s" is a JSON value, called a string value. Next, if v1, . . . , vn

are JSON values and s1, . . . , sn are pairwise distinct string values, then o =

{s1 : v1, . . . , sn : vn} is a JSON value, called an object. In this case, each255

si : vi is called a key-value pair of o. Finally, if v1, . . . , vn are JSON values then

a = [v1, . . . , vn] is a JSON value called an array. In this case v1, . . . , vn are

called the elements of a. Numeric values, strings and the boolean values true,

and false are called basic JSON values.

JSON navigation instructions. To navigate through JSON documents we260

use JSON navigation instructions. For an object J , the navigation instruction

J [“key”] returns the value of a pair in J whose key is the string “key”, and for

an array J , the navigation instruction J [n], for a natural number n, returns the

n-th element of J . These instructions can be stacked to retrieve values of nested

JSON documents; e.g. J [”key1”][7], will first fetch the value of the key “key1”265

(if J is an object), and then, assuming that this value is an array, return the

seventh element of the array. If the JSON does not have the corresponding key

or array element, the navigation expression returns an error.

Size bounds for join queries. We recall some of the results by Atserias

et. al. [6] regarding size bounds as presented in [20]. Consider a join query

Q = R1 ./ R2 ./ . . . ./ Rm with attributes A1, . . . , An, and a database D where

the size of each Ri is Ni. The idea is to obtain a bound for the output of Q

in terms of the cardinality of each relation. Suppose that we have relations

Ri1 , . . . , Rik that contains all the attributes appearing in Q. Then, a bound for

the size of the query could be |Q| ≤
∏k
j=1Nij , since the other relations involved

only act as filters for the final output. We can get an even better bound by
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selecting the smallest set of relations with this property, which corresponds to

what is known as the edge cover of the query Q. Moreover, the seminal result

by Atserias et. al. shows an optimal bound by considering the following linear

program:

minimize
∑
i

xi logNi

where
∑

i : Aj is an attribute of Ri

xi ≥ 1 for j = 1, . . . , n

xi ≥ 0 for i = 1, . . . ,m

(1)

We denote by ρ∗(Q,D) the optimal value of
∑
i xi logNi. The AGM bound [6]

establishes that |Q(D)| is always bounded by 2ρ
∗(Q,D), and that this bound is270

tight, i.e. there are infinitely many queries and families of instances where the

bound is realized. We thus refer to 2ρ
∗(Q,D) as the AGM bound of Q over D.

4. Enabling SPARQL to make JSON calls

In this section we define the syntax and the semantics of the overloaded

SERVICE operator that allows SPARQL to connect to JSON APIs and incorpo-275

rate API information into its query answers. We begin by describing how JSON

APIs function, followed by the syntax and semantics of the overloaded SERVICE

operation in SPARQL. We finish by illustrating the utility of this extension

using a set of real world examples.

4.1. JSON APIs, requests and navigating JSON documents, URI templates280

While theoretically one can use our ideas to connect SPARQL to any Web

API, we concentrate on the so-called REST Web APIs, which communicate via

HTTP requests, and we only consider requests of type GET. Of course, any

implementation needs to take care of many other details when connecting to

APIs (e.g. authentication). Our implementation takes this into consideration,285

but these implementation details vary with APIs and systems, so here we just

focus on the problem of evaluating these queries.
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We assume that all API responses are JSON documents, and we use JSON

navigation conditions to navigate and retrieve certain pieces of a JSON docu-

ment. We always assume that the general structure of the JSON response is290

known by users; this can be achieved, for example, by including the schema

of the response in the documentation of the API (see e.g. [37, 18]). This is a

common assumption when one works with Web APIs.

The last ingredient we need are URI templates. We use them as a simple

way to define placeholders that will be filled at the time an HTTP requests is295

made.

Definition 1 (URI templates [24]). A URI Template is a URI in which the

query part may contain substrings of the form {?x}, for ?x in V. For example,

the following are URI templates:

http://weather.api/request?q={?city}300

http://other.api/request?q={?city},{?country}

The idea behind these templates is that variable elements inside brackets are

replaced by concrete values at the time the request is made. In what follows,

we will refer to the variables in such substrings of a URI template U as the

variables of U , and denote them with var(U).305

4.2. Syntax and semantics of the extended SERVICE operator

Our proposal is based on overloading the SERVICE operator to allow for

SERVICE-to-API patterns, which we define next.

Definition 2 (SERVICE-to-API pattern). Let P1 be a SPARQL pattern,

U a URI template using only variables that appear in P1, ?x1, . . . , ?xm a se-

quence of pairwise distinct variables that do not appear in P1, and N1, . . . , Nm

a sequence of JSON navigation instructions. Then the following is a SPARQL

pattern, that we call a SERVICE-to-API pattern:

P1 . SERVICE U {(N1, N2, . . . , Nm) AS (?x1, ?x2, . . . , ?xm)} (2)
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The idea is that we now allow users writing queries to be able to access

information given by APIs they know of. The intuition behind the evaluation310

of this operator over a graph G is the following. For each mapping µ in the

evaluation JP1KG we instantiate every variable ?y in the URI template U with

the value µ(?y), thus obtaining an IRI which is a valid API call1. We call the

API with this instantiated IRI, obtaining a JSON document, say J . We then

apply the navigation instruction N1 to J and, assuming the instruction returns315

a basic JSON value, store this value into ?x1. Similarly, the value of N2 applied

to J is stored into ?x2, and so on. The mapping µ is then extended with the

new variables ?x1, . . . , ?xm, which have been assigned values according to J and

N1, N2, . . . , Nm.

Notice that in (2) the pattern P1 can again be an overloaded SERVICE pattern320

connecting to another JSON API, thus allowing us to obtain results from one

or more APIs inside a single query.

Example 2. Consider the SPARQL basic graph pattern P1 given by P1 =

{?x wdt:P131 wd:Q22 . ?x rdfs:label ?y} and the URI template U given

by U = <http://weather.api/request?q={?y}>. Then the following is a325

SERVICE-to-API pattern.

P = P1 . SERVICE U{(["temperature"]) AS (?t)}

As we explained, the intention of this pattern is to issue a call to U instantiated

with all values ?y in the evaluation of P1, and then assign to ?t those values

found under the key "temperature" of the JSON document that is returned by330

the API.

Semantics. The semantics of a SERVICE-to-API pattern is defined in terms

of the instantiation of a URI template U with respect to a mapping µ (denoted

1Note that replacing ?y in a URI template with µ(?y) may result in a IRI, and not a URI,

since some of the characters in µ(?y) need not be ASCII. To stress this, we use the term IRI

for any instantiation of the variables in a URI template.
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µ(U)), which is simply the IRI that results by replacing each construct {?x} in

U with µ(?x), or an invalid IRI in case some µ(?x) is not defined. Thus, every335

mapping produces an IRI, which we then use to execute an HTTP request to

the API in the body of the IRI. Formally, we have the following definition.

Definition 3 (Calling APIs with templates and mappings). Let U be a

URI template and µ a mapping. The instantiation of U with respect to µ,

denoted as µ(U), corresponds to340

• An arbitrary invalid IRI, if there is some ?x ∈ var(U) such that µ(?x) is

not defined, or

• The IRI obtained by replacing each construct {?x} in U with µ(?x).

Then, the call to U with respect to µ, denoted as call(U, µ), is the result of

the following process:345

1. Instantiate U with respect to µ, obtaining the IRI µ(U).

2. Produce a request to the API signed by (µ(U)), obtaining either a JSON

document (in case the call is successful) or an error.

Note that we adopt the convention that HTTP requests that do not give back

a JSON document result in an error, that is, call(U, µ) = error whenever the350

request using U does not result in a valid JSON document.

Example 3. Consider the mapping µ, such that µ(?y) = Ben Nevis, and the

template U = <http://weather.api/request?q={?y}>. Then we have that

µ(U) = <http://weather.api/request?q=Ben Nevis>. When this request is

executed against the weather API in the IRI, the answer result is either a JSON355

document similar to the one from Example 1, or it is an error.

To define the evaluation of SERVICE-to-API patterns, we need some more

notation. First, if ?x is a variable and t ∈ T a term, we use ?x 7→ t to denote the

mapping that assigns t to ?x and does not assign values to any other variable.
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Next, given a JSON document J , a navigation expression N , and a variable ?x,

we define the set M?x 7→J[N ] of mappings as follows:

M?x 7→J =



{?x 7→ J} , if J is a basic JSON value⋃
1≤i≤k{?x 7→ Ji} , if J = [J1, . . . , Jk], and all Ji

are basic JSON values

∅ , otherwise.

The idea is that M?x 7→J[N ] contains the single mapping ?x 7→ J [N ], when J [N ]

is a basic JSON value (integer, string, or boolean), or, if J [N ] is the array

[J1, . . . , Jk] of basic JSON values, a set of k mappings each of which maps ?x to

an element Ji. As per the definition above, we also assume that M?x 7→J[N ] = ∅360

when J is not a valid JSON document, or J = error.

We can finally state the semantics of SERVICE-to-API patterns.

Definition 4 (Semantics of SERVICE-to-API). Let P be a SERVICE-to-

API pattern as specified in Definition 2, with the form

P = P1 . SERVICE U {(N1, N2, . . . , Nm) AS (?x1, ?x2, . . . , ?xm)}.

The semantics JP KG is then defined as

JP KG = {µ ./ µ1 ./ . . . ./ µm | µ ∈ JP1KG, µi ∈M?xi 7→call(U,µ)[Ni]}.

Therefore, a mapping in JP KG is obtained by extending a mapping µ ∈ JP1KG

by binding each ?xi to the value in the JSON value call(U, µ)[Ni] (or one of the

values therein, if said JSON document is an array).365

In the case that call(U, µ) = error (e.g. when µ(?x) is not defined for some

?x ∈ var(U)), or that call(U, µ)[Ni] is not a basic JSON value, the mapping µ

will not be extended to the variables ?xi, and will not be part of JP KG. Moreover,

if µ ∈ JP1KG is not compatible with a mapping in M?xi 7→call(U,µ)[Ni] (because,

for example, µ assigns a different value to ?xi), then this will also not be part of370

JP KG. This behaviour is inline with the default behaviour of SPARQL SERVICE

[38] which makes the entire query fail if the SERVICE call results in an error.

16



In the case that we want to implement the SILENT option for SERVICE which

makes the latter behave as an OPTIONAL (see [38]), we would need to change the

∅ in the definition of M?x 7→J[N ] to the empty mapping µ∅, since this mapping375

can be joined with any other mapping.

Let us now illustrate this definition by means of some examples. First, we

illustrate the basics of our definitions in a context where the call is given by a

single variable and the values returned are basic JSON values.

Example 4 (Example continued). Consider the SPARQL basic graph pat-380

tern P1 given by P1 = {?x wdt:P131 wd:Q22 . ?x rdfs:label ?y} and the

URI template U given by U = <http://weather.api/request?q={?y}>. Let

P = P1 . SERVICE U{(["temperature"]) AS (?t)}

be the pattern we are evaluating over some RDF graph G, and assume that

JP1KG contains the following mappings.385

?x ?y

µ1 wd:London London

µ2 wd:Berlin Berlin

The evaluation of P over G is then obtained by extending mappings in JP1KG

using U . That is, we iterate over µ ∈ JP1KG one by one, execute the call

call(U, µ), and store the value call(U, µ)["temperature"] into the variable ?t,

in case that the obtained JSON value is a string, a number, or a boolean value,390

and discard µ otherwise. For example, if we assume that the calls are as follows,

call(µ1, U) = {"temperature": 22 }, call(µ2, U) = error

then M?t7→call(µ1,U)["temperature"]] contains the mapping that assigns the num-

ber 22 to the variable ?t and M?t 7→call(µ2,U)["temperature"] is empty. Thus, the

evaluation JP KG will contain the following mapping395

?x ?y ?t

µ1 wd:London London 22
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As we previously remarked, the call call(U, µ2) returns an error, the mapping

µ2 can not be extended, so it will not form a part of the output. In the case

that the “SILENT semantic” is triggered, we would actually output µ2 where ?t

would not be bound.400

Let us now present a more involved example, in which we have a few variables

and the APIs return arrays.

Example 5 (Example 4 continued). As in Example 4, we continue using

pattern P1 = {?x wdt:P131 wd:Q22 . ?x rdfs:label ?y}. This time, how-

ever, we use a different URI template U ′, given by

U ′ = <http://weather.api/request?q={?y}&type=extended>,

which returns more extended weather information, including a 3-day forecast.

Once again, we have a graph G, and we assume that JP1KG contains map-

pings.405

?x ?y

µ1 wd:London London

µ2 wd:Berlin Berlin

This time, however, the documents that the API returns are different. In

particular, call(µ1, U
′) is now the following JSON document:

{

"temperature": {410

"current": 22,

"forectast": [18,17,18]

},

"description": "sunny at times, possible showers in the evening"

}415

In order to get both the current temperature and the 3-day forecast, we use
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the SERVICE-to-API P ′, given by

P ′ = P1 . SERVICE U
′{(["temperature"/"current"],

["temperature"/"forectast"/0], ["temperature"/"forectast"/1],

["temperature"/"forectast"/2] ) AS (?c,?f0,?f1,?f2)}

The idea is to retreive the current temperature into variable ?c, and the three

days of forecast in variables ?f0, ?f1 and ?f2. Thus, in this case, to compute

the answer we have the following sets of mappings:

• The single mapping in M?c7→call(µ1,U ′)["temperature"/"current"]] assigns 22 to

variable ?c,420

• The single mapping in M?c7→call(µ1,U ′)["temperature"/"forectast"/0]] assigns 18

to variable ?f0,

• The single mapping in M?c7→call(µ1,U ′)["temperature"/"forectast"/1]] assigns 17

to variable ?f1, and

• The single mapping in M?c7→call(µ1,U ′)["temperature"/"forectast"/2]] assigns 18425

to variable ?f2,

Once again, if we assume that call(µ2, U
′) returns error, then the evaluation

JP ′KG of P ′ over G is the mapping

?x ?y ?c ?f0 ?f1 ?f2

µ wd:London London 22 18 17 18

Using JSON arrays directly gives us another option to retrieve this informa-

tion, which would result in an answer with more mappings, but less variables,

which would be specially useful in times we do not know the number of elements

in the array we retrieve. For example, if we now use the pattern

P ′′ = P1 . SERVICE U
′{(["temperature"/"current"],

["temperature"/"forectast"]) AS (?c,?f)}
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Now the navigation instruction ["temperature"/"forectast"] gives the430

array [18, 17, 18] when evaluated in call(µ1, U
′). Then, the setM?c7→call(µ1,U ′)["temperature"/"current"]]

still contains only the mapping that assigns 22 to variable ?c, but now the set

M?c 7→call(µ1,U ′)["temperature"/"forecast"]] contains three mappings:

?f

σ0 18

σ1 17

σ2 18

Thus, in this case the semantics of P ′′ is similar to that of P ′, but where435

the values of f0, f1 and f2 are distributed into the value of f in three different

mappings. That is, the evaluation JP ′′KG of P ′ over G is the set of mapping

given by:

?x ?y ?c ?f

µ1
1 wd:London London 22 18

µ2
1 wd:London London 22 17

µ3
1 wd:London London 22 18

5. A Basic Implementation440

In this section we propose a way to implement the overloaded SERVICE op-

eration on top of any existing SPARQL engine without the need to modify its

inner workings. To do so, we partition each query using this operator into

smaller pieces, and evaluate these using the original engine whenever possible.

The idea here is to obtain all the information needed to execute the API calls,445

and then do all the calls at once.

Before we describe our algorithms, we have a few important issues to ad-

dress. First, we remark that all this machinery is designed to work under the

assumption that API name parameters are known, as well as the schema of the

responses of each API call, and this is why our operators are designed so that450

users input all of this information at the time of processing queries. Further-

more, we also assume that API results are correct: our goal in this paper is to
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produce optimal evaluation of patterns calling APIs, but we do not deal with

other important problems such as incomplete information, correctness of web

results, or entity-linking.455

5.1. Basic processing algorithm

The basic implementation delegates the computation of all SPARQL com-

ponents to the system. When evaluating the answers of a query over a graph

G, whenever the system encounters a pattern of the form

P ≡ P1 . SERVICE U{(N1, N2, . . . , Nm) AS (?x1, ?x2, . . . , ?xm)}

that needs to be processed, our implementation proceeds as follows. First, we

compute the answers JP1KG by calling again our implementation. Then, we

use Algorithm 1 to compute the answers JP KG of the full pattern, which can

be invoked once we know the answers of the basic pattern accompanying the460

SERVICE call. Finally, we serialize the set of mappings M using the VALUES

operator, as in [5], to allow it to be used by the next graph pattern inside the

WHERE clause in which it appears, thus enabling us to delegate once again the

computation of the answer to a SPARQL system.

Regarding the final step, the obtained mappings need to be serialized as465

strings in case P is followed by another graph pattern P2. In particular, if we

are processing a query of the form SELECT * WHERE {P . P2}, with P as above,

then P2 needs to be able to access the values from the mappings matched to P .

With this implementation, the natural question is whether it can be opti-

mized. As we have mentioned in the introduction, the bottleneck in our case is470

API calls, so if we want to evaluate queries efficiently, we need to do the least

amount of API calls as possible. There are a number of optimisations we can

immediately apply to our basic implementation that will reduce the number of

calls, and we discuss them next. Afterwards, in Section 6, we consider a rather

different question, for a broad subclass of patterns: Can we reformulate query475

plans to make sure we are making as few calls as possible?
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Algorithm 1: Naive evaluation of a SERVICE-to-API pattern

Input : A graph G, a pattern P ≡

P1 . SERVICE U{(N1, N2, . . . , Nm) AS (?x1, ?x2, . . . , ?xm)},

set JP1KG of mappings.

Output: Answer JP KG

Initialize M,M1, . . . ,Mm as ∅.;

for each µ ∈ JP1KG do

Execute call(U, µ) ;

if call(U, µ) returns error then

continue to the beginning of the loop ;

end

for each 1 ≤ i ≤ m do
compute Mi = M?xi 7→call(U,µ)[Ni];

if Mi = ∅ then

break the loop ;

end

end

Let M = M ∪ ({µ} ./ M1 ./ . . . ./ Mm)

end

Return M

5.2. Immediate optimisations

Here we describe two simple approaches for reducing the number of API

calls: avoiding duplicate calls, and caching. These simple optimisations will

also be compared to the more general algorithm for minimising the number of480

calls that we propose in Section 6.

Removing duplicate calls. In many scenarios we might end up with several

API calls for the same URL. For example, a simple query of the form

SELECT ?x ?t WHERE {

?x ex:label1 ?z .485

?x ex:label2 ?n .
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SERVICE <http://api.org/{?n}> { (["time"]) AS (?t) }

might contain several mappings where the same value is bound to the variable

?n, resulting in several calls using the same value, which is suboptimal. To

eliminate this behaviour we proceed as follows. We first obtain all distinct

values ?n that can be bound in the query, produce one call for each value, and

then join with the result of the rest of the query. More generally, we can replace

P1 . SERVICE U { (N1, N2, . . . , Nm) AS (?x1, ?x2, . . . , ?xm)}, (3)

where U uses variables y1, . . . , yn, with the SPARQL pattern

{ SELECT var(P1) WHERE {P1} } AND

{ (SELECT DISTINCT ?y1, . . . , ?yn WHERE P1)

SERVICE U {(N1, N2, . . . , Nm) AS (?x1, ?x2, . . . , ?xm) } }

It is easy to see that these patterns are equivalent. However, this transformation

introduces a significant increase of the workload of our local database, so the

usage depends heavily on how slow we expect APIs to respond: the slower the490

API response time, the better that this optimisation performs.

Caching. Clearly the best way of reducing API calls is to not do them at all,

because we already have them in the system. This is important even if we are

dealing with just a single query, as several mappings may actually require the

same API calls.495

Our implementation has support for caching API calls while processing the

same SERVICE-to-API pattern, which should remove the need for duplicate re-

quests when processing a single SERVICE-to-API query. This caching is brute-

force: every time a call to an API is produced, we cache the exact IRI that

was used in this call, as well as the resulting JSON document (if the call was500

successful). Thus, before each call we first retrieve the IRI in the cache (which

is a very fast operation since we maintain an index on the cache), and only pro-

ceed with the call if we cannot find the answer. Of course, for complex queries

there is a memory issue where all cached files may not fit into working memory.

If this is the case we just keep the files in disk until we finish processing the505
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API. We remark that this is a usual problem when caching data, and one can

tackle this problem using the same techniques as general caching in databases

(for example, by leasing the control of the cache to the operating system), and

for this reason we do not discuss this issue any further.

Finally, one could also think of a caching strategy that is based on opti-510

mising calls across the evaluation of multiple SERVICE-to-API patterns, and

over a wider timespan. The problem with this optimisation is that it is only

correct when the result of the same API call does not change over time, which

is something we cannot control.

6. A Worst-case optimal algorithm515

Our goal is to evaluate SERVICE-to-API queries as efficiently as possible,

which implies minimising the number of API calls we issue when evaluating

queries. This takes us to the following question: what is the minimal amount of

API calls that need to be issued to answer a given query? Ideally, we would like

to issue a number of calls that is linear in the size of the output of the query:520

for each tuple in the output we issue only those calls that are directly relevant

for returning that particular tuple. But in general this is not possible. Consider

a pattern of the following form:

{?x0 p ?x1} . . . {?xm−1 p ?xm} . SERVICE U {(N) AS ?y},

where U is a call that uses all variables ?x1, . . . , ?xm. Then the number of calls525

we would need to issue could be of order |G|m (e.g. when all triples in G are

of the form (a, p, b)), but depending on the API data the output of this query

may even be empty!

What we can do is aim to be optimal in the worst case, making sure that we

do not make more calls than the number we would need in the worst case over530

all graphs and APIs of a given size. We can devise an algorithm that realises

this bound if we focus on the smaller class of SPARQL queries made just from

concatenating basic graph patterns and SERVICE-to-API operators, which we

denote as conjunctive patterns. This is the federated analogue of conjunctive
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queries, which amount to roughly two thirds of the queries issued on the most535

popular endpoints on the Web, according to [11].

We tackle this problem with a novel framework that reduces API calls to

the problem of bounding the number of tuples in the output of a relational

query, a subject that has received considerable attention in the past few years

in the database community (see e.g. [6, 19, 35]), but over an extended relational540

model that includes access methods for each relation. We then devise an algo-

rithm that can evaluate queries over relational databases with access methods,

a result which is of independent interest. We start this section with a high-level

explanation of our technique, and then proceed to design the algorithm and

establish the promised worst-case optimality.545

6.1. Overview of our framework

We begin by showing how to cast the problem of processing a SERVICE-to-

API pattern as a problem of answering a join over a relational database with

access methods. More precisely, given a graph G and a pattern P , we construct

a relational instance IP,G and a relational query QP such that the evaluation550

of QP over IP,G corresponds precisely to the evaluation JP KG. Note that we

can do this because P is a conjunctive pattern, and therefore every mapping in

JP KG bounds the same variables.

So how does QP and IP,G look like? We can easily translate basic graph

patterns in P as relational tables, simply by storing all the results of the pattern555

as a table. For example, given a basic graph pattern P ′ = {?x p1 ?y}.{?x p2 ?z},

we can store it as a relation R′ on attributes ?x, ?y, ?z, such that (a, b, c) ∈ R′

if and only if both (a, p1, b) and (a, p2, c) are triples in G. But APIs require a

more careful treatment. We model them as relations with access methods (see

e.g. [9, 13]). Intuitively, the idea is that these relations have a set of ouptut560

attributes that can only be accessed once we know the input attributes. Then,

the variables used to construct an API call are represented as input attributes,

and the information we extract from the call is modelled as output attributes.
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In order to state our bounds, denote by MQ,D the maximum size of the pro-

jection of any relation appearing in a relational query Q over a single attribute565

in the database D. The main result we show in this section is the following

Proposition 5. Any conjunctive service to API P can be evaluated over a

graph G using a number of calls in

O(MQP ,IP,G
× 2ρ

∗(QP ,IP,G)).

The proof of this proposition comes from a novel result establishing tight

bounds for answering join queries over relations with access methods. The re-

mainder of this section is devoted to the proof of these bounds, and then relating

it to Proposition 5. We begin by formally defining relations with access meth-570

ods, and then show how one can minimize the number of calls when evaluating

queries over such relations.

6.2. Relational setup

In the following we assume familiarity with relational databases and schemas,

and relational algebra [2]. We begin with the notion access methods.575

Definition 6 (relational schemas with access methods). An access method

for a relation R partition its attributes R as input attributes and output at-

tributes. We denote access methods with the same symbol as the relations

they specify, but making explicit which of the attributes are input attributes,

and which are output attributes. For example, an access method for a relation580

R(A,B,C) with attributes A, B and C and where A and C are input attributes

is denoted by R(Ai, Bo, Ci) (letter i is a shorthand for input and o for output).

Access methods impose a restriction on the way queries are to be evaluated,

as there are queries that cannot be evaluated at all. For example, consider a

schema with relations R(Ai, Bo), S(Ao, Bo) and T (Bi, Co). Then S ./ R ./ T585

can always be evaluated2, since the input for R is an output of S and likewise

2We abuse the notation and denote relational joins using the same symbol that we use for

mappings; the two operators are always distinguished by the context.
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for T . However, R ./ T can not be evaluated, as we do not have a source for

the input of R. Let us formalise these notions.

Definition 7 (Feasible join queries). A join query over a relational schema

S with access methods is a query of the form Q = R1 ./ R2 ./ . . . ./ Rm, where590

each Ri is a (not necessarily distinct) access method for a relation in S, and

each join is a natural join.

An access method for relation Ri in Q is covered if all of its input attributes

appear as an output in any of the relations R1, . . . , Ri−1. If all its access methods

are covered, then Q is said to be feasible.595

Naturally, a join query can only be answered if it is equivalent to a feasible

query, so without loss of generality we focus on feasible queries. It turns out that

this is also enough for our purposes, as queries we produce out of conjunctive

SERVICE-to-API patterns are always feasible.

The task of evaluating a query over access methods closely resembles query-600

ing APIs, as in both cases we are using known information to query data sources

we don’t know. Furthermore, an API itself can be understood as a relation with

access methods, in which the information requested by the API are their inputs,

and the information returned is the output. However, in order to analyse the

cost of answering a relational query with access methods we need to fix the com-605

munication cost of accessing a particular set of tuples that is under an access

method with an input. As in APIs, we adopt the convention of one call per each

different set of inputs.

Definition 8 (Calls in access methods). For a relation T with input at-

tributes A1, . . . , Ak and a set R of tuples having all attributes A1, . . . , Ak, the610

number of calls required to answer R ./ T corresponds to the size of πA1,...,Ak
(R).

Intuitively, this means that we answer R ./ T by selecting all different inputs

coming from the tuples of R, and issue one call for each of these inputs.

We can then analyse the number of calls for the naive left-deep join plan

for Q = R1 ./ R2 ./ . . . ./ Rm, which corresponds to setting φ1 = R1 and615
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iteratively computing φi+1 = φi ./ Ri+1 until we obtain φm, which corresponds

to the answers of Q. How many calls do we issue? In the worst case where all

except R1 are relations representing APIs, we would need to issue a number of

calls corresponding to the sum of the tuples in R1, R1 ./ R2, and so on until

R1 ./ . . . ./ Rn−1.620

Example 6. Consider a schemaR(Ao, Bo), S(Bi, Co), T (Ci, Ai) and queryQ =

R ./ S ./ T . The left deep plan for Q first computes R ./ S, which needs a

number of calls equivalent to the number of tuples in πB(R). Then, we use

the result of R ./ S to compute R ./ S ./ T , which requires a number of calls

equivalent to the number of tuples in πA,C(R ./ S), which is quadratic on the625

size of R and S.

In the following section we show a tighter bound for the number of calls

required, as well as an algorithm fulfilling this bound.

6.3. Optimal algorithm for join queries with access methods

Without loss of generality, in this section we assume that there is exactly one630

access method per relation in Q (if not one can construct two different relations,

the worst case analysis does not change).

Our algorithm is inspired by the optimal plan exhibited in [6, 20] for con-

junctive queries without access methods. Starting from a join query Q with

attributes A1, . . . , An, we construct a sequence of queries ∆1, . . . ,∆n, where635

∆n is equivalent to Q, and where the evaluation of each such query ∆i overesti-

mates the evaluation of the query πA1,...,Ai(Q). The construction is depicted as

pseudocode in Algorithm 2. The idea is to order every attribute participating

in the query, and for an (ordered) increasing amount of attributes A, we obtain

all potential values of these attributes that may be part of the final answer. The640

key component is that these set of potential values is the best over-estimation

of the API calls we need to issue when processing relations whose input values

are contained in the set A of attributes.
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Algorithm 2: Rewrite

Input : A feasible join query Q = R1 ./ R2 ./ . . . ./ Rm under access

methods

Output: A sequence of queries ∆1, . . . ,∆n

Let A1, . . . , An be an enumeration of all attributes involved in Q, in

order of their appearance ;

Let inputs(R) denote the set of all input attributes of the access

method for R ;

let S1
1 , . . . , S

1
k1

be all relations in {R1, . . . , Rn} whose set inputs(S1
` ) of

input attributes is contained in {A1} (including relations with only

output attributes);

∆1 ← πA1
(S1

1) ./ . . . ./ πA1
(S1
k1

);

for i = 2 to n do

Let Si1, . . . , S
i
ki

be all relations such that inputs(Si`) is contained in

{A1, . . . , Ai};

∆i ← ∆i−1 ./ πA1,...,Ai
(Si1) ./ . . . ./ πA1,...,Ai

(Siki);

end

Return ∆1, . . . ,∆n

Next, as each of these queries is feasible, we can evaluate them one-by-one

over our database. As the analysis shows, this is in fact an optimal way of645

reducing the number of calls issued by the query (as long as we assume that we

do not call two times the same access method with the same parameter).

Analysis. Let us first remark that the feasibility of Q∗ follows from the fact

that Q is feasible, so every relation with inputs A1, . . . , Ai appears after all

these attributes are outputs of previous relations, and we order attributes in650

the order of appearance. Furthermore, we remark that we assume that we store

the results of all relations R with Input(R) 6= ∅ in memory the first time they

are requested, and before we compute any projection over them, so that we do

not have to issue another call to R using the same inputs. This only imposes
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Algorithm 3: Evaluating a join query with access methods

Input : A feasible join query Q = R1 ./ R2 ./ . . . ./ Rm under access

methods, a database D

Output: Evaluation of Q over D with minimal calls

Let A1, . . . , An be an enumeration of all attributes involved in Q, in

order of their appearance ;

∆1, . . . ,∆n ← Rewrite(Q) ;

for i = 1 to n do

Let Si1, . . . , S
i
ki

be all relations such that inputs(Si`) is contained in

{A1, . . . , Ai}, and recall that

∆i ← ∆i−1 ./ πA1,...,Ai(S
i
1) ./ . . . ./ πA1,...,Ai(S

i
ki

).

Then, ∆i is feasible.

Evaluate ∆i over database D using the evaluation of ∆i−1

end

Return the evaluation of ∆n over database D.

a memory requirement that is at most as big as what we would need with the655

basic implementation described in the previous section.

Recall that for a query Q and instance D, MQ,D is the maximum size of the

projection of any relation in Q over a single attribute, and 2ρ
∗(Q,D) is the AGM

bound of the query. We then have the following result.

Proposition 9. Let Q be a feasible join query over a schema with access meth-

ods and D a relational instance of this schema. Let ∆n be the query constructed

from Q by the algorithm above. Then the number of calls required to evaluate

∆n over D using a left-deep plan is in

O(MQ,D × 2ρ
∗(Q,D)).

Proof. Let us assume that Q = R1 ./ R2 ./ . . . ./ Rm, all over attributes

A1, . . . , An, and let ∆1, . . . ,∆n as explained above. As we mentioned, observe

that each ∆i is also feasible. Now any API call we do for a relation Rj with
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input attributes A1, . . . , Ai in our left deep plan is of the form

(
∆i−1 ./ πA1,...,Ai

(R1) ./ . . . ./ πA1,...,Ai
(Rj−1)

)
./ πA1,...,Ai

(Rj).

The size of ∆i−1 ./ πA1,...,Ai
(Ri) is bounded by the size of ∆i−1 × πAi

(Ri),

where × denotes the Cartesian product of relations, as ∆i−1 already contains a

subexpression joining with πA1,...,Ai−1
(Ri). Hence, the number of tuples in the

output of the expression

(
∆i−1 ./ πA1,...,Ai

(R1) ./ . . . ./ πA1,...,Ai
(Rj−1)

)
is bounded by MQ,D · |∆i−1(D)|, as we only add to ∆i−1 the values πAi

(R)660

of the relation R with the greatest projection over Ai, the others act only as

semijoins that filter the result. So to evaluate an appearance of a relation Rj in

some ∆i we need to pose at most MQ,D · |∆i−1| calls. Since by the AGM bound

we have that |∆i−1| ≤ 2ρ
∗(Q,D), we can therefore evaluate the appearance of

Rj in ∆i using at most MQ,D · 2ρ
∗(Q,D) calls. Therefore, the total number of665

calls is bounded by m ·MQ,D · 2ρ
∗(Q,D) (as we are caching results), which is in

O(MQ,D × 2ρ
∗(Q,D)) when we assume the query to be fixed (that is, when we

consider the data complexity).

Let m be the number of relations in Q and n the total number of attributes.

If we are considering combined complexity (i.e. Q is part of the input), the670

bound above raises to O(m × MQ,D × 2ρ
∗(Q,D)) for the algorithm that does

caching. Likewise, the number of calls is in O(n × m × MQ,D × 2ρ
∗(Q,D)) if

we rule out the possibility of storing results of the calls in memory during the

process of evaluating the queries.

Optimality. Our last result establishes the optimality of our solution, as there675

are queries that must be evaluated using at least the number of calls demanded

by Proposition 9.

Proposition 10. There is a schema S, a query Q and a family of instances

(Dn)n≥1 such that: (i) The maximum size of the projection of a relation in D
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over one attribute is n, (ii) The AGM bound is n2, and (iii) Any algorithm680

evaluating Q must make at least n3 calls to a relation with access methods.

Proof. Consider the schema with access methods with relations R(Ao, Bo, Co),

S(Bi, Ci, Do), U(Bi, Eo) and T (Ai, Di, Ei), and an instance D where R con-

tains tuples {(i, 1, 1) | 1 ≤ i ≤ n}, S contains tuples {(1, 1, i) | 1 ≤ i ≤ n}, U

contains tuples {(1, i) | 1 ≤ i ≤ n} and T contains n arbitrary tuples. Now let685

Q = R ./ S ./ U ./ T . The maximum size of the projection of a relation in D

over one attribute is n, and it can be checked that the bound 2ρ
∗(Q,D) corre-

sponds to n2, by solving the appropriate linear program. Furthermore, since T

has inputs which are only in the union of all R, S and U , any algorithm looking

to answer Q must issue one call for each tuple in πA,D,E(R ./ S ./ U) (if not,690

one can create an interpretation for T where this algorithm does not answer the

query correctly). We obtain that n3 calls are needed, as this is the size of the

ouptut of R ./ S ./ U over D.

6.4. Algorithm for SERVICE-to-API patterns

Let us now come back to SERVICE-to-API patterns. The way we provide an695

algorithm is by (1) translating SERVICE-to-API patterns into join queries with

access methods, and then (2) constructing an optimal plan for the SERVICE

pattern when given a plan for the relational query.

For (1), let P be a SERVICE-to-API pattern and QP the constructed join

query, and consider an RDF graph G. Next we describe the construction of the700

relational query QP and explain how to construct the instance IP,G in which

QP should be evaluated.

Definition 11 (Relational counterparts of SERVICE-to-API patterns).

Let G be a graph and P be a conjunctive SERVICE-to-API pattern of the form:

{{{{{{P1 . S1} . P2 } . S2} . P3 } . S3} . . . Pn} . Sn,705

where each Pi is a basic graph pattern (not using SERVICE) and each Si is a

different SERVICE-to-API pattern.

32



Query QP is then defined as

QP = R1 ./ T1 ./ R2 ./ T2 ./ . . . ./ Rn ./ Tn, (4)

where each Ri is a relation whose attributes corresponds to the variables in Pi,

and each Ti is a relation with access methods constructed from Si as follows.

Suppose Ti is of the form

SERVICE U {(N1, N2, . . . , Nm) AS (?x1, ?x2, . . . , ?xm)}.

Then the output attributes in Ti are ?x1, . . . , ?xm, and the input attributes of Ti

are var(U), the variables mentioned in the URI template U .

Next, the relational instance IP,G is defined as follows.710

- Each relation Ri in IP,G with attributes ?x1, . . . , ?xm contains the set of tuples

{(µ(?x1), . . . , µ(?xn)) | µ ∈ JP KG}.

- Each relation Ti in IP,G with input attributes ?z1, . . . , ?zk and output attributes

?y1, . . . , ?yp contains the set of tuples

{(µ(?z1), . . . , µ(?zk), µ(?y1), . . . , µ(?yp)) | µ ∈ JP KG}.

With this in mind, we can now show the soundness of using a relational

translation to answer conjunctive patterns:

Lemma 12. Let P be a conjunctive SERVICE-to-API pattern using variables

{?x1, . . . , ?x`}. A tuple (a1, . . . , a`) is in the evaluation of QP over IP,G if and

only if there is a mapping µ ∈ JP KG such that (a1, . . . , a`) = (µ(?x1), . . . , µ(?x`)).715

Proof. Let us assume P and G are of the form described in Definition 11,

where in particular the set of variables mentioned in P is {?x1, . . . , ?x`}, QP =

R1 ./ T1 ./ R2 ./ T2 ./ . . . ./ Rn and IP,G is constructed as explained above.

For the if direction, consider a tuple (a1, . . . , a`) in the evaluation of QP over

IP,G. By definition, there must be mappings µ1, . . . , µn and µ′1, . . . , µ
′
n−1 such

that (i) all these mappings are compatible and their value over {?x1, . . . , ?x`}
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must coincide whenever at least two of them have one of these variables in the

domain, (ii) µi is in JPiKG and (iii) Letting

µ =
⋃

1≤j≤n

µi ∪
⋃

1≤k≤n−1

µ′k

we have that for each SERVICE call

Sj = SERVICE U (N1, N2, . . . , Nm) AS (?z1, ?z2, . . . , ?zm),

we have that call(U, µ)[Nk] is either µ′j(?zk) or is an array that contains µ′j(?zk).

By the semantics of SPARQL and (conjunctive) SERVICE-to-API patterns720

we get that µ ∈ JP KG, and that (a1, . . . , a`) = (µ(?x1), . . . , µ(?x`)).

For the only if direction, consider such a mapping µ in JP KG and let

(a1, . . . , a`) = (µ(?x1), . . . , µ(?x`)). It is then easy to see that each of the

relations are populated with the appropriate subsets of (a1, . . . , a`), so that this

tuple must be in the evaluation of QP over IP .725

Note that for finding the worst-case optimal plan for QP we do not need to

construct the instance IP,G, as this would amount to pre-computing the answer

JP KG. The lemma above is just to state that the translation is correct.

Next we show how to construct an optimal plan for P from the optimal plan

we know how to construct from QP . Together with Lemma 12, this completes730

the proof of Proposition 5.

Proposition 13. Let P be SERVICE-to-API pattern, G an RDF graph and

QP , IP,G the corresponding relational query with access methods and instance

as constructed above. Then any optimal query plan Q∗ for QP over an in-

stance IP,G can be transformed (in polynomial time) into a query plan for P735

that evaluates P over G using the same amount of API calls as the evaluation

of Q∗.

Proof. The plan for P mimics step-by-step the plan for QP . That is, assume

that ∆n is the reformulation of QP from Section 6.3, and that ∆n = E1 ./ . . . ./
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Er, with each Er a join-free expression. . Starting with φ1 = E1, we iteratively740

compute the the set JφiKG = Jφi−1KG ./ Ei of mappings for each i = 2 · · · r.

This is done in the following way. Whenever Ei = π?x1,...,?xp
Ri, we evaluate the

query SELECT ?x1, . . . , ?xp WHERE Pi over G. On the other hand, if Ei is a

relation using Tj for the first time, we call the API (because QP is feasible we

will have all the needed input parameters), cache all the API results and then745

only retrieve the attributes that are not projected out in Ei. All subsequent

appearances of Tj are evaluated directly on the JSON file we store while the

evaluation continues. (If we are not using this mild form of caching, then we

need to call the API for each Ek, where k > i, that uses Tj .) Since the query φr

is equivalent to Q∗, it is also equivalent to QP . Thus the output of this query750

plan correctly computes JP KG by Lemma 12. The number of calls is worst-case

optimal by Proposition 9 and Proposition 10.

7. Experiments

The goal of this section is to give empirical evidence that the worst-case

optimal algorithm of Section 6 does indeed minimize the number of API calls.755

For this, we run two sets of experiments: the first one is based on the Berlin

SPARQL Benchmark (v3.1) [10], and the second one is the recently proposed

Wikidata Benchmark [23] that tests the performance of evaluating BGPs in

SPARQL engines. These benchmarks were designed for standard SPARQL,

but we adapted the queries to make them useful for testing SERVICE-to-API760

patterns. In the corresponding subsections, we specify how we simulate API

calls and responses. All the experiments where run on a 64-bit Windows 10

machine, with 8 GB of RAM, and Intel Core i5 7400 3.0 GHz processor. The

source code of our implementation, together with the scripts used to simulate

APIs can be found at [1].765

Implementation. Our implementation of SERVICE-to-API patterns is done on

top of Jena TBD 3.4.0 using Java 8 update 144. We differentiate four evaluation

algorithms for SERVICE-to-API patterns: (1) Vanilla, the base implementation
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described in Section 4; (2) Cache, the base algorithm that uses caching to avoid

doing the same API call more than once; (3) WCO, the implementation of our770

WCO algorithm (3) WCO + Cache, which is the worst-case optimal algorithm

avoiding duplicate calls via caching.

7.1. Berlin Benchmark

The Berlin benchmark dataset [10] is inspired by an e-commerce use case.

It consists of products that are offered by vendors and are reviewed by users.775

Each one of those entities has properties related with them (such as labels,

prices, etc.). The benchmark itself is composed of 12 queries, named Q1-Q12,

and the size of the dataset is specified by the user. To test our implementation

we generate 3 distinct datasets of different size. The specifications can be found

at the Table 2.780

Dataset Number of triples Size

D1 19625500 5 Gb

D2 41795444 10 Gb

D3 79881347 20 Gb

Table 2: Sizes of the datasets created for the Berlin Benchmark.

Adapting the Berlin benchmark to include API calls. Our adapta-

tion consists of exposing the data of five recurrent patterns we find in the

benchmark queries as APIs that return JSON documents. For instance, one

such pattern is {?x bsbm:productPropertyNumericZ ?y}, where Z is a num-

ber between 1 and 5. This pattern is used to return the value of some nu-

meric property of a product with the label ?x, so we created a (local) API

route api/numeric-properties/{label}, that will return all the values of nu-

meric properties of an object as a JSON file. That is, if a product with the

IRI bsbm:Product1 has a label "Product1", and its numeric properties are

PropertyNumeric1 = 3, PropertyNumeric2 = 10, then the request

api/numeric-properties/Product1
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returns the JSON: { "p1": 3, "p2": 10 }.

All together, we simulate an API that has the following five routes:

• api/numeric-properties/{label}, which receives a label of a product

and returns a JSON containing all of the product’s numeric values as pairs

"propertyNumericX" : n, with n the value of propertyNumericX.785

• api/textual-properties/{label}, which receives a label of a product

and returns a JSON containing all of the product’s numeric values as pairs

"propertyTextualX" : s, with s the value of propertyTextualX.

• api/features/{label}, which receives a label of a product and it returns

an array with all the labels of its features.790

• api/offers/{offer-id}, which receives de id of an Offer and returns the

properties of this offer.

• api/review/{review-id}, which receives de id of a Review and returns

the properties of this review.

Next, we transform the original benchmark queries by replacing each pat-795

tern used when creating the APIs by a SERVICE call to the corresponding API.

For instance, in the case of the “numeric properties API” described above, we

replace each pattern of the form: {?product bsbm:productPropertyNumericX

?valueX}, by the following API call:

SERVICE <api/numeric-properties/{label}>{ (["pX"]) AS (?valueX) }800

We do a similar transformation for each of the other four patterns that were

exposed as APIs. We run all the queries of the Berlin Benchmark except Q6, Q9,

and Q11, because they were too short to include API calls in their patterns. To

understand the results of the experiment, first we have to discuss the meaning

of each query [10].805

• Q1: Find products for a given set of generic features.

37



• Q2: Retrieve basic information about a specific product for display pur-

poses.

• Q3: Find products having some specific features and not having one fea-

ture.810

• Q4: Find products matching two different sets of features.

• Q5: Find products that are similar to a given product.

• Q7: Retrieve in-depth information about a product including offers and

reviews.

• Q8: Retrieve recent English language reviews for a specific product.815

• Q10: Get cheap offers which fulfill the consumer’s delivery requirements.

• Q12: Export information about an offer into another schema.

We change the OPTIONAL operator in each query by AND, because the two

are the same in terms of worst case optimal analysis. A specification of the

queries that we run is available in Appendix A. Note that those queries depend820

on some constants that we had to choose. Thus the values that we use and for

more details about how to construct an API from the benchmark, you can view

its source code at [1].

Results. Since our goal is to show how more involved algorithms reduce API

calls, we report the total number of calls issued by the Vanilla implementation825

when evaluating queries, as well as the calls issued by the other three implemen-

tations, in terms of the percentage with respect to the Vanilla evaluation. Here

we do not include the results of the WCO algorithm without caching, since it

does not present a significant improvement with respect to the Cache implemen-

tation and the best performance is obtained with the WCO+Cache algorithm.830

Results for D1 are presented in Table 3.

As we see, avoiding duplicate calls reduces the number of calls to some

extent, but the best results are obtained when we use the worst-case optimal
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Calls Vanilla % Vanilla % Cache % WCO+Cache

Q1 28 100% 100% 89%

Q2 43 100% 6% 0%

Q3 28 100% 100% 39%

Q4 139 100% 100% 10%

Q5 346 100% 8% 8%

Q7 6 100% 100% 100%

Q8 2 100% 100% 0%

Q10 6 100% 100% 0%

Q12 1 100% 100% 100%

AVG 66 100% 40% 14%

Table 3: Number of API calls performed by the Vanilla implementation over D1 as well as

the percentage of this total issued by all four implementation. Berlin queries are adapted

into SERVICE-to-API patterns. The last row shows the average percentage of calls that the

algorithm does compared to Vanilla. The combination of WCO + Cache does 14% of the

original calls done by the naive algorithm.

algorithm. As summary we show the average percentage of API calls done with

respect to the original algorithm. In average, the worst-case optimal algorithm835

with caching does a 14% of the calls done by the naive algorithm.

Here we note that Q2, Q5, Q7 and Q8 are queries that fix some product.

Thus, when we use the WCO algorithm, all the triple patterns related to such

product are resolved before requesting data to the API, hence the number of

calls to the API is reduced dramatically except for Q7, where the resolution of840

the triple patterns related to the product does not filter the possible answers.

Also for query Q12, the query involves a single offer that is also fixed but it is

not being filtered by the following triple patterns, and then the number of API

calls remains the same for every algorithm. It is important to note that not

every product is related with certain properties (such as propertyNumeric4 or845

propertyNumeric5), and then, it is possible that our algorithm resolves that

a query answer is empty before executing a SERVICE-to-API. This happens

for queries Q2, Q8 and Q10, where we reduce the number of API calls to zero.
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Finally we note that for the other queries, the WCO algorithm is definitely an

improvement with respect to the naive algorithm. The trend shown for this850

dataset holds for D2 and D3 as we can see in tables 4 and 5 respectively.

Calls Vanilla % Vanilla % Cache % WCO+Cache

Q1 170 100% 81% 77%

Q2 49 100% 6% 0%

Q3 163 100% 100% 34%

Q4 169 100% 100% 63%

Q5 1348 100% 7% 7%

Q7 6 100% 100% 100%

Q8 4 100% 100% 50%

Q10 6 100% 100% 0%

Q12 1 100% 100% 100%

AVG 209 100% 30% 20%

Table 4: Percentage of total issued by all four implementations over D3. The combination of

WCO + Cache does 21% of the original calls done by the naive algorithm.

Calls Vanilla % Vanilla % Cache % WCO+Cache

Q1 343 100% 80% 73%

Q2 49 100% 6% 0%

Q3 323 100% 100% 31%

Q4 275 100% 100% 58%

Q5 2642 100% 10% 10%

Q7 5 100% 100% 100%

Q8 6 100% 100% 50%

Q10 5 100% 100% 20%

Q12 1 100% 100% 100%

AVG 405 100% 31% 21%

Table 5: Percentage of total issued by all four implementations over D3. The combination of

WCO + Cache does 21% of the original calls done by the naive algorithm.
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7.2. Wikidata Benchmark

Although the Berlin benchmark tests several operators of SPARQL, it pro-

duces patterns that are structurally simple, and therefore leave fewer room for

better algorithms. To test for more complex patterns we use the Wikidata855

benchmark proposed by Hogan et al. [23] for testing the implementation of a

worst-case optimal join algorithm in SPARQL.

The benchmark proposes 17 query templates, which are basic graph patterns

that contains only variables. By instantiating the predicates in these patterns

with different constants, each template gives rise to 50 instantiated queries. The860

predicates are taken from the Wikidata dataset, and each one of the queries is

not empty when evaluated to such database. For example, one of the instanti-

ations of the template

{?x ?p1 ?y . ?x ?p2 ?z}

is the SPARQL query865

SELECT * WHERE { ?x wdt:P57 ?y . ?x wdt:P166 ?z }.

Let us describe the 17 templates used in the benchmark. For this, they

are divided into templates with a single join join variable and templates with

multiple join variables:

• Single join variable:870

– Trees ( , and ): join trees over a single join variable

rooted on the subject.

– Inverted trees ( , and ): join trees over a single join

variable but now rooted on the object.

– Joins ( , and ): the join variable combines subjects875

with objects.

• Multiple join variables:

– Paths ( and ): paths of length three or four respectively.
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– Triangles ( and ): BGPs asking for triangles over the database.

– Squares ( , , and ): BGPs asking for squares over the880

database.

The definition of each template can be found in Appendix B.

Adapting the Wikidata benchmark to include API calls. Just as we

did for the Berlin Benchmark, we need to adapt these 17 templates to include

API calls into them. The way we do this is by choosing one of the triples of885

the pattern and replacing them with an API call that has the same information

as the original database. We always chose a triple pattern in the middle of the

template, unless the template has only two triple patterns, where for syntactic

reasons, we chose the last one. For instance, consider the template of the

benchmark:890

{ ?x ?p01 ?y . ?x ?p02 ?z . ?x ?p03 ?u},

representing a tree where the join variable is the subject. One possible

instantiation as a SERVICE-to-API query is the following:

SELECT * WHERE {

?x wdt:P2918 ?y .895

SERVICE <api/wdt:P1366/{?y}>{ (["z"]) AS (?z) } .

?x wdt:P1807 ?u

}

Again, from this template we produce 50 SERVICE-to-API patterns by re-

placing property variables ?p01, ?p02 and ?p03 by concrete properties found in900

the Wikidata graph. A complete list of the adapted templates can be found in

Appendix C.

Results. We use the same measure as before: if we say that the calls issued

by queries under the Vanilla implementation corresponds to the 100% of calls,

then we are interested in reducing the percentage of those calls that are issued905

by the other implementations: Cache, WCO and WCO+Cache. Note that

42



here we include the API calls done by the WCO algorithm without caching to

understand how this technique on its own is an improvement with respect to the

naive algorithm. Recall that there are 50 queries per each of the 17 templates;

we only present the aggregate of all these 50 queries. The results can be seen in910

figures 1 and 2. Here y axis represents the percentage of calls done to the API

with respect to the Vanilla implementation. The dot is the average percentage

of calls over all 50 queries, and the boxes are bounded by the first quartile and

the third quartile for each one of the templates (according to the results of their

50 queries). Within the box, the line represents the median.915

Here we can see that the behaviour from the previous section is repeated

again: the WCO+Cache algorithm produces a dramatical decrease in the

number of API calls. But this benchmark allows us to understand the perfor-

mance of the WCO algorithm on its own. We have to note that there are some

patterns where the maximum value of the WCO algorithm goes beyond 100%;920

this means that for certain queries the algorithm does more API calls than the

naive evaluation. This is because the order of execution of our algorithm, in

some cases, induces more intermediate results. However, as the interquartile

interval suggest, in most of the queries we have less calls to the API than the

naive algorithm and even than the Cache version of the algorithm. This hints925

that our WCO algorithm, which evaluates in a different way the query than the

naive algorithm, is essential for the performance obtained by the WCO+Cache

algorithm.

Finally, we note some queries such as or where the WCO algorithm

does not mark any difference. This is because this queries are formed by two930

patterns: a single triple pattern and a SERVICE-to-API pattern. Therefore,

the query plan for the WCO algorithm is equivalent to the naive algorithm,

because there is a single way to evaluate the query.
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Figure 1: Boxplots of runtimes for adapted queries of the Wikidata benchmark
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Figure 2: Boxplots of runtimes for adapted queries of the Wikidata benchmark. WCO and

WCO + Cache produce the steepest decrease in API calls.

8. Conclusion

In this paper we propose a way to allow SPARQL queries to connect to935

HTTP APIs returning JSON. We describe the syntax and the semantics of

this extension, show how it can be implemented on top of existing SPARQL

engines, provide a worst-case optimal algorithm for processing these queries, and

demonstrate the usefulness of this algorithm through a series of experiments.

Moving forward, one of our main goals is to support and test the extended940

SERVICE operator in the context of public SPARQL endpoints. This will require

us to deal with the authentication issue present in many APIs, and adding

support for such operations to SPARQL seems to be a non-trivial task. In this
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context, we would also like to test whether one can issue API calls in parallel,

and how this affects the performance of the algorithms we propose in this work.945

An orthogonal like of future work is to also explore the potential for auto-

matic entity resolution based on an API answer; this is, to transform the API

information such as literals representing names of people or places back into

IRIs. Thus, it would be possible to achieve a better integration between the

API data and the RDF Graph. Also, we would like to explore how our exten-950

sion can handle real-world issues related to APIs, such as to manage APIs that

paginate the results or that do not accept a high number of requests in short

intervals of time. Obviously, it is also necessary to explore how our worst-case

optimal algorithm can be adapted to handle this kind of issues. Finally, we are

also interesting in extending the API coverage by supporting formats other than955

JSON.
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[27] P. Lisena, A. Meroño-Peñuela, T. Kuhn, and R. Troncy. Easy web api de-

velopment with sparql transformer. In International Semantic Web Con-1020

ference, pages 454–470. Springer, 2019.

47

https://tools.ietf.org/html/rfc6570
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Appendix A. Berlin Benchmark Queries

• Q1:

PREFIX ex: <http://example.org/>

PREFIX bsbm: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>1075

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT * WHERE {

?product rdfs:label ?label .

?product rdf:type %ProductType% .

SERVICE <http://localhost:5000/features/{label}>{1080

($.values[*]) AS (?v1)

}

FILTER(?v1 = %ProductFeature1%)

SERVICE <http://localhost:5000/features/{label}>{

($.values[*]) AS (?v2)"1085

}

FILTER(?v2 = %ProductFeature2%)

?product bsbm:productPropertyNumeric1 ?v3

FILTER (?v3 > 500)

}1090

• Q2:

PREFIX ex: <http://example.org/>

PREFIX bsbm: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>1095

SELECT * WHERE {

%Product% rdfs:label ?label .

%Product% rdfs:comment ?comment .
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%Product% bsbm:producer ?p .

?p rdfs:label ?producer .1100

SERVICE <http://localhost:5000/features/{label}>{

($.values[*]) AS (?f)

}

SERVICE <http://localhost:5000/textual/{label}>{

($.p1, $.p2, $.p3) AS1105

(?propertyTextual1, ?propertyTextual2, ?propertyTextual3)

}

SERVICE <http://localhost:5000/numeric/{label}>{

($.p1, $.p2) AS (?propertyNumeric1, ?propertyNumeric2)

}1110

%Product% bsbm:productPropertyTextual4 ?p4 .

%Product% bsbm:productPropertyTextual5 ?p5

}

• Q3:

PREFIX ex: <http://example.org/>1115

PREFIX bsbm: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT * WHERE {

?product rdfs:label ?label .1120

?product rdf:type %ProductType% .

SERVICE <http://localhost:5000/features/{label}>{

($.values[*]) AS (?f)

}

FILTER(?f = %ProductFeature%)1125

?product bsbm:productPropertyNumeric1 ?p1 .

FILTER ( ?p1 > %value%)
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?product bsbm:productPropertyNumeric2 ?p2

FILTER (?p2 < %value2% )

}1130

• Q4:

PREFIX ex: <http://example.org/>

PREFIX bsbm: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>1135

SELECT * WHERE {

?product rdfs:label ?label .

?product rdf:type %ProductType% .

SERVICE <http://localhost:5000/features/{label}>{

($.values[*]) AS (?v1)1140

}

FILTER(?v1 = %ProductFeature%)

SERVICE <http://localhost:5000/features/{label}>{

($.values[*]) AS (?v2)

}1145

FILTER((?v2 = %ProductFeature2% || ?v2 = %ProductFeature3%))

?product bsbm:productPropertyNumeric1 ?p1 .

FILTER (?p1 > %value%)

}

• Q5:1150

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX bsbm: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/>

PREFIX ex: <http://example.org/>

PREFIX rev: <http://purl.org/stuff/rev#>1155
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PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT * WHERE {

?product rdfs:label ?label .

?product rdf:type %ProductType% .1160

%Product% rdfs:label ?label2

FILTER (%Product% != ?product)

%Product% bsbm:productFeature ?f .

?product bsbm:productFeature ?f

SERVICE <http://localhost:5000/numeric/{label}>{1165

($.p1) AS (?simp1)

}

SERVICE <http://localhost:5000/numeric/{label2}>{

($.p1) AS (?origp1)

}1170

FILTER (?simp1 < (?origp1 + 120) && ?simp1 > (?origp1 - 120))

SERVICE <http://localhost:5000/numeric/{label}>{

($.p2) AS (?simp2)

}

SERVICE <http://localhost:5000/numeric/{label2}>{1175

($.p2) AS (?origp2)

}

FILTER (?simp2 < (?origp2 + 500) && ?simp2 > (?origp2 - 500))

}

• Q7:1180

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX bsbm: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/>

PREFIX ex: <http://example.org/>
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PREFIX rev: <http://purl.org/stuff/rev#>1185

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT * WHERE {

%Product% rdfs:label ?label .

?offer bsbm:product %Product% .1190

?offer ex:id ?id

SERVICE <http://localhost:5000/offer/{id}>{

($.price, $.vendor, $.country) AS (?pr, ?vendor, ?country)

}

FILTER(?country = \"http://downlode.org/rdf/iso-3166/countries#GB\")1195

?review bsbm:reviewFor %Product% .

?review ex:id ?id2 .

SERVICE <http://localhost:5000/review/{id2}>{

($.revName, $.revTitle) AS (?revName, ?revTitle)

}1200

?review bsbm:rating1 ?rating1 . ?review bsbm:rating2 ?rating2

}

• Q8:

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>1205

PREFIX bsbm: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/>

PREFIX ex: <http://example.org/>

PREFIX rev: <http://purl.org/stuff/rev#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>1210

SELECT * WHERE {

%Product% rdfs:label ?label .

?review bsbm:reviewFor %Product% .
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?review ex:id ?id2 .

SERVICE <http://localhost:5000/review/{id2}>{1215

($.revName, $.revTitle, $revText) AS (?revName, ?revTitle, ?revText)

}

?review bsbm:rating1 ?rating1 .

?review bsbm:rating2 ?rating2 .

?review bsbm:rating3 ?rating3 .1220

?review bsbm:rating4 ?rating4

}

• Q10:

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>1225

PREFIX bsbm: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/>

PREFIX ex: <http://example.org/>

PREFIX rev: <http://purl.org/stuff/rev#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>1230

SELECT * WHERE {

%Product% rdfs:label ?label .

?offer bsbm:product %Product% .

?offer ex:id ?id .

SERVICE <http://localhost:5000/offer/{id}>{1235

($.price, $.vendor, $.country) AS (?price, ?vendor, ?country)

}

?offer bsbm:deliveryDays ?devDays .

FILTER(?devDays < %value%)

}1240

• Q12:
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PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX bsbm: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/>

PREFIX ex: <http://example.org/>1245

PREFIX rev: <http://purl.org/stuff/rev#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT * WHERE {

%Offer% bsbm:product ?p .1250

?p rdfs:label ?label .

%Offer% ex:id ?id

SERVICE <http://localhost:5000/offer/{id}>{

($.price, $.vendor) AS (?price, ?vendor)

}1255

%Offer% bsbm:deliveryDays ?devDays .

%Offer% bsbm:offerWebpage ?offerURL .

%Offer% bsbm:validTo ?validTo

}

Appendix B. Templates of the Wikidata benchmark1260

Appendix C. Adapted templates of the Wikidata benchmark

•

SELECT * WHERE {

?x ?p1 ?y .

SERVICE <api/{?p2}/{?x}>{ (["z"]) AS (?z) } .1265

}

•

SELECT * WHERE {
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?x ?p1 ?y .

?x ?p2 ?z

?x ?p1 ?y .

?x ?p2 ?z .

?x ?p3 ?u

?x ?p1 ?y .

?x ?p2 ?z .

?x ?p3 ?u .

?x ?p4 ?v

?y ?p1 ?x .

?z ?p2 ?x

?y ?p1 ?x .

?z ?p2 ?x .

?u ?p3 ?x

?y ?p1 ?x .

?z ?p2 ?x .

?u ?p3 ?x .

?v ?p4 ?x

?y ?p1 ?x .

?x ?p2 ?z

?y ?p1 ?x .

?x ?p2 ?z .

?x ?p3 ?u

?y ?p1 ?x .

?x ?p2 ?z .

?x ?p3 ?u .

?v ?p4 ?x

?x ?p1 ?y .

?y ?p2 ?z .

?z ?p3 ?u .

?x ?p1 ?y .

?y ?p2 ?z .

?z ?p3 ?u .

?u ?p4 ?v

?x ?p1 ?y .

?y ?p2 ?z .

?z ?p2 ?x

?x ?p1 ?y .

?y ?p2 ?z .

?x ?p3 ?z

?x ?p1 ?y .

?y ?p2 ?z .

?z ?p3 ?u .

?u ?p4 ?x

?x ?p1 ?y .

?x ?p2 ?u .

?z ?p3 ?y .

?z ?p4 ?u

?x ?p1 ?y .

?y ?p2 ?z .

?z ?p3 ?u .

?x ?p4 ?u

?x ?p1 ?y .

?x ?p2 ?u .

?y ?p3 ?z .

?u ?p4 ?z

Figure B.3: Templates and their associated diagram. Obtained from [23].

?x ?p1 ?y .

SERVICE <api/{?p2}/{?x}>{ (["z"]) AS (?z) } .1270

?x ?p3 ?u .

}

•

SELECT * WHERE {

?x ?p1 ?y .1275

SERVICE <api/{?p2}/{?x}>{ (["z"]) AS (?z) } .

?x ?p3 ?u .

?x ?p3 ?v .

}

•1280

SELECT * WHERE {

?y ?p1 ?x .

SERVICE <api-inv/{?p2}/{?x}>{ (["z"]) AS (?z) } .

}

•1285
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SELECT * WHERE {

?y ?p1 ?x .

SERVICE <api-inv/{?p2}/{?x}>{ (["z"]) AS (?z) } .

?u ?p3 ?x .

}1290

•

SELECT * WHERE {

?y ?p1 ?x .

SERVICE <api-inv/{?p2}/{?x}>{ (["z"]) AS (?z) } .

?u ?p3 ?x .1295

?v ?p4 ?x .

}

•

SELECT * WHERE {

?y ?p1 ?x .1300

SERVICE <api/{?p2}/{?x}>{ (["z"]) AS (?z) } .

}

•

SELECT * WHERE {

?y ?p1 ?x .1305

SERVICE <api/{?p2}/{?x}>{ (["z"]) AS (?z) } .

?x ?p3 ?u .

}

•

SELECT * WHERE {1310
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?y ?p1 ?x .

SERVICE <api/{?p2}/{?x}>{ (["z"]) AS (?z) } .

?x ?p3 ?u .

?v ?p4 ?x .

}1315

•

SELECT * WHERE {

?x ?p1 ?y .

SERVICE <api/{?p2}/{?y}>{ (["z"]) AS (?z) } .

?z ?p3 ?u .1320

}

•

SELECT * WHERE {

?x ?p1 ?y .

SERVICE <api/{?p2}/{?y}>{ (["z"]) AS (?z) } .1325

?z ?p3 ?u .

?u ?p4 ?v .

}

•

SELECT * WHERE {1330

?x ?p1 ?y .

SERVICE <api/{?p2}/{?y}>{ (["z"]) AS (?z) } .

?z ?p3 ?x .

}

•1335
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SELECT * WHERE {

?x ?p1 ?y .

SERVICE <api/{?p2}/{?y}>{ (["z"]) AS (?z) } .

?x ?p3 ?z .

}1340

•

SELECT * WHERE {

?x ?p1 ?y .

SERVICE <api/{?p2}/{?y}>{ (["z"]) AS (?z) } .

?z ?p3 ?u .1345

?u ?p4 ?x .

}

•

SELECT * WHERE {

?x ?p1 ?y .1350

SERVICE <api/{?p2}/{?x}>{ (["u"]) AS (?u) } .

?z ?p3 ?y .

?z ?p4 ?u .

}

•1355

SELECT * WHERE {

?x ?p1 ?y .

SERVICE <api/{?p2}/{?y}>{ (["z"]) AS (?z) } .

?z ?p3 ?u .

?x ?p4 ?u .1360

}
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•

SELECT * WHERE {

?x ?p1 ?y .

SERVICE <api/{?p2}/{?x}>{ (["u"]) AS (?u) } .1365

?y ?p3 ?z .

?u ?p4 ?z .

}
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